Local Road Dilapidation Report Marrickville Council Project Name: WestConnex New M5 Project number: 15.7020.2597 **Document number:** M5N-CN-RPT-PWD-0004 **Revision date:** 09/05/2016 Revision: 00 ### **Document Approval** | Rev. | Date | Prepared by | Reviewed by | Recommended by | Approved by | Remarks | |-------|----------|----------------------|-------------------|----------------|-------------|---------| | 00 | 09/05/16 | Haris
Chandrasiri | Tim
Cunningham | | T Orpen | | | Signa | ture: | | | | | | WestConnex New M5 ## **Details of Revision Amendments** #### **Document Control** The Project Director is responsible for ensuring that this Report is reviewed and approved. The Construction Manager (Project Wide) is responsible for updating this Report to reflect changes to the Project, legal and other requirements, as required. ### **Amendments** Any revisions or amendments must be approved by the Project Director before being distributed or implemented. ### **Revision Details** | Revision | Details | |----------|------------------------------| | 00 | Prepared for internal review | | | | ## **Contents** | 1. | Intro | duction | 4 | |-------|-------|---|---| | 2. | Dilap | oidation survey of Local Roads within the control of Marrickville Council | 5 | | | 2.1 | Group 1- Local Roads that will be utilised for heavy and oversized vehicles | 5 | | | 2.2 | Group 2 - Local roads within 50m of the construction works but are not utilised for construction traffic. | 6 | | Attac | hmer | nt 1 – Pre-construction Road Condition Report for WestConnex New M5 Main Works Project | 9 | | | | nt 2 - Clause 3.2 Pavement Repairs of SWTC Appendix C.6 Local Road Maintenance during ect Company's Work1 | 1 | | | 13 | | | WestConnex New M5 ### 1. Introduction The CPB Contractors, Dragados and Samsung Joint Venture (CDS-JV) has been selected to deliver the New M5 from St Peters to Beverly Hills. Condition B59 of the Minister's Condition of Approval (MCoA) requires CDS-JV to determine the access route(s) for heavy and oversized vehicles associated with the construction of the New M5 and site establishment works and prepare a Local Road Dilapidation Report for those local roads within the control of the relevant councils that would be utilised. In addition, Clause 4.3 of Exhibit A of the SWTC requires CDS-JV to undertake ground and infrastructure condition surveys of all existing infrastructure (including local roads) within 50 meters of the Project Site and Temporary Areas and within a surface corridor which, when viewed in plan, has boundaries set a minimum of 50 meters beyond all excavations. This is the dilapidation report of the local roads within the control of Marrickville Council. ## 2. Dilapidation survey of Local Roads within the control of Marrickville Council Local Roads within the control of Marrickville Council that require dilapidation survey falls in to two groups; - Group 1- Local roads that will be utilised for heavy and oversized vehicles associated with the construction of the New M5 (Condition B59 of MCoA) - Group 2- Local roads within 50m of the construction works but are not utilised for construction traffic (Clause 4.3 of Exhibit A of the SWTC) ### 2.1 Group 1- Local Roads that will be utilised for heavy and oversized vehicles Table 1 below shows the increase in traffic volumes on the local roads that will be utilised for heavy and oversized vehicles associated with the construction of the WestConnex New M5. | Street | From | То | Lengt
h (m) | Directi
on | ** Traffic volumes and perform
2016 with construction tra
Heavy Vehicles AM Peak Hour PM Peak | | traffic | | |------------|--------------------|---------------|----------------|---------------|--|---------------|--------------|---------------| | | | | | | | | 'ehicles | | | | | | | | | | PM Peak Hour | | | | | | | | Total | %
increase | Total | %
increase | | * Canal Rd | Princes
Highway | Burrows
Rd | 550 | East
bound | 91 | 39% | 66 | 71% | | | | | | West
bound | 85 | 43% | 107 | 35% | ^{*} Roads in Local Areas to be maintained by the Project Company #### Table 1 As per the Condition B59 of Minister's Condition of Approval the Local Road Dilapidation Report must assess the current condition of the road and describe mechanism to restore any damage that may result due to its use by traffic and transport related to the construction of the WestConnex New M5. Local Road Dilapidation survey was undertaken by Australian Road Research Board (ARRB) and dilapidation survey results and the assessment of the current condition of the local roads is described in the report Pre-construction Road Condition Report WestConnex New M5 Main Works Project by ARRB (Attachment 1). Mechanisms to restore any damage that may result due to its use by traffic and transport related to the construction of the project Canal Road will be maintained by the Project Company during the Project Company's Work as required by 'Appendix C.6 Local Road Maintenance during Project Company's Work'. Any damage that may result due to construction traffic will be restored during the local road maintenance by the Project Company. ^{**} New M5 EIS Vol 202B App G Traffic and Transport Part 02 ## 2.2 Group 2 - Local roads within 50m of the construction works but are not utilised for construction traffic Table 2 below shows the local roads within 50m of the construction works but that will not be utilised for project construction traffic. Assessment of the current condition of the local roads is described in the report Pre-construction Road Condition Report WestConnex New M5 Main Works Project by ARRB (Attachment 1). A post-construction dilapidation report will be prepared within 4 weeks of the completion of construction. The post-construction dilapidation report will be compared with the pre-construction dilapidation report and any changes in the road condition will be recorded. Any damage that may have resulted due to construction of the Project Company's Work will be assessed and repairs undertaken based on the geotechnical instrumentation and monitoring data, primarily vertical and horizontal ground movement data, in conjunction with the dilapidations reports. | Street | From | То | Length
(m) | Suburb | |---|---|---------------|---------------|----------| | Holbeach Av | South St | To End | 350 | Tempe | | South St | from Holbeach Av to Fanning St + 200m length to Tempe Golf Driving range entrance (see below for the 200m long section) | | 450 | Tempe | | (No name) access
RD to Tempe Golf
Driving Range | 200m length to Tempe Golf Driving range entrance from South Street | | 200 | Tempe | | Station St | South St | Old St | 100 | Tempe | | Hart St | South St | 120m length | 120 | Tempe | | Wentworth St | South St | 160m length | 160 | Tempe | | Fanning St | South St | 180m length | 180 | Tempe | | Barden St | Princes Highway | Wood ST | 230 | Tempe | | Smith St | Princes Highway | Wood ST | 190 | Tempe | | Lymerston St | Princes Highway | 100m length | 100 | Tempe | | Samuel St | Princes Highway | 100m length . | 100 | Tempe | | Milne Lane | Lymerston St | Samuel St | 80 | Tempe | | Terry St | Princes Highway | 130m length | 130 | Tempe | | Bellevue St | Princes Highway | 30m length | 30 | Tempe | | Belmore St | Princes Highway | 140m length | 140 | Tempe | | Belmore Lane | Park Rd | 140m length | 140 | Sydenham | | Stewart Lane | Park Rd | Railway Rd | 80 | Sydenham | |--|-----------------------------|--------------------|-----|-----------| | Railway Lane | Railway Rd | Henry St | 200 | Sydenham | | Railway Rd | Princes Highway | 150m length | 150 | Sydenham | | Park Lane | Stewart Lane | 100m length | 100 | Sydenham | | Hilton Av | From Railway Lane | to end | 50 | Sydenham | | Reilly Lane | Princes Highway | Henry Street | 190 | Sydenham | | George St | Princes Highway | 150m length | 150 | Sydenham | | Yelverton St | Princes Highway | 140m length | 140 | Sydenham | | Frederick St | Princes Highway | 120m length | 120 | Sydenham | | Sutherland St | Princes Highway | 110m length | 110 | St Peters | | Grove St | Princes Highway | 130m length | 130 | St Peters | | Alfred St | Princes Highway | 140m length | 140 | St Peters | | Mary St | Princes Highway | 150m length | 150 | St Peters | | Roberts St | Edith St | 140m length | 140 | St Peters | | Edith St | Princes Highway | 100m length | 100 | St Peters | | Bakers Lane | Grove St | Mary St | 130 | St Peters | | Roberts Lane | from Mary St to Edith St | | 120 | St Peters | | Talbot St | Princes Highway | 50m length | 50 | St Peters | | Bellevue St
(opposite George
St) | Princes Highway | 70m length | 70 | St Peters | | Bishop St | Princes Highway | Princes
Highway | 270 | St Peters | | Victoria St (south of Princes Highway) | from Princes Highway | to end | 50 | St Peters | | Barwon Park Rd | Campbell St | Princes
Highway | 450 | St Peters | | Crown St | Campbell St | Barwon Park
Rd | 230 | St Peters | | Unwins Bridge Rd | 100m from end of road works | 100m length | 100 | St Peters | | Mary St | End of road works | Princes
Highway | 350 | St Peters | | Brown St | End of road works | Silver Rd | 180 | St Peters | |---------------|-----------------------------|-------------|-----|-----------| | Florence St | End of road works | Silver Rd | 260 | St Peters | | Hutchinson St | 100m from end of road works | 100m length | 100 | St Peters | | St Peters St | 120m from end of road works | 120m length | 120 | St Peters | | Church St | 145m from end of road works | 145m length | 145 | St Peters | Table 2 Attachment 1 – Pre-construction Road Condition Report for WestConnex New M5 Main Works Project Pre-Construction Road Condition Report for WestConnex New M5 Main Works Project – Marrickville Council for CDS JV - ii - ## SUMMARY ARRB was commissioned by CDS JV (CPB Contractors Pty Limited, Dragados Australia Pty Ltd, and Samsung C&T Corporation Joint Venture) to survey and assess the current condition of the nominated roads associated with the construction of the WestConnex New M5 Main Works project. A surface condition survey of the road network was conducted by ARRB in April 2016 to collect condition distresses including rutting, roughness, texture and cracking information. The scope of the main report includes: - collection and processing of pavement condition data into various data categories including roughness (IRI m/km), rut depth (mm), texture depth (mm) and cracking (% area). - preparation of a report evaluating the overall condition of each road by direction and lane for each of the road authorities involved in the study area. The study area involves several road authorities and the road conditions are reported in the below road groups for each organisation where applicable. - Group 1 Local roads that will be utilised for heavy and oversized vehicles - Group 2 Local roads within 50m of the construction works but are not utilised for construction traffic - Group 3 Non-haulage maintenance roads - RMS- Arterial roads within 50m buffer zone Condition assessments presented are based on current industry practices for the purpose of dilapidation rather than a customised local condition assessment. It should be noted that the condition statement could vary depending on the definition. See Section 1.3 for details. The results of the condition assessment are presented separately for each road agency. This report is an extraction from the main report of the sections relevant for Marrickville Council. #### Marrickville Council Condition assessments (based on current industry standards) are presented based on the average condition of road sections owned by Marrickville Council. ### Group 1 roads: | | IRI group | Rut group | Texture group | Cracking group | |--------------|-----------|-----------|---------------|----------------| | CANAL RD_C_1 | Good | Good | Fair | Very good | | CANAL RD_C_2 | Good | Good | Fair | Very good | | CANAL RD_C_3 | Good | Fair | Fair | Good | | CANAL RD_P_1 | Good | Good | Fair | Very good | | CANAL RD_P_2 | Good | Fair | Fair | Very good | ### Group 2 roads: | | IRI group | Rut group | Texture group | Cracking group | |-----------------|-----------|-----------|---------------|----------------| | ALFRED ST_P_1 | Very poor | Fair | Fair | Very good | | BAKERS LANE_P_1 | Very poor | Fair | Fair | Good | | | IRI group | Rut group | Texture group | Cracking group | |---|-----------|-----------|---------------|----------------| | BARDEN ST_P_1 | Good | Fair | Poor | Very good | | BARWON PARK RD_C_1 | Fair | Fair | Poor | Very good | | BARWON PARK RD_P_1 | Fair | Good | Fair | Very good | | BELLEVUE ST (OPPOSITE
GEORGE ST)_C_1 | Very good | Fair | Poor | Good | | BELLEVUE ST_C_1 | Fair | Fair | Poor | Very good | | BELLEVUE ST_P_1 | Very good | Good | Fair | Very good | | BELMORE LANE_P_1 | Good | Poor | Fair | Very good | | BELMORE ST_P_1 | Fair | Good | Fair | Very good | | BISHOP ST_P_1 | Very poor | Fair | Fair | Good | | BROWN ST_P_1 | Fair | Good | Poor | Very good | | CHURCH ST_P_1 | Fair | Good | Poor | Good | | CROWN ST_P_1 | Very poor | Fair | Poor | Very good | | EDITH ST_P_1 | Fair | Fair | Fair | Very good | | FANNING ST_P_1 | Good | Very good | Poor | Fair | | FLORENCE ST_P_1 | Poor | Good | Fair | Very good | | FREDERICK ST_P_1 | Good | Fair | Fair | Very good | | GEORGE ST_C_1 | Good | Good | Fair | Very good | | GEORGE ST_P_1 | Good | Good | Fair | Very good | | GROVE ST_P_1 | Very poor | Fair | Fair | Very good | | HART ST_P_1 | Poor | Good | Fair | Fair | | HILTON AV_P_1 | Very good | Fair | Fair | Very good | | HOLBEACH AV_C_1 | Fair | Fair | Poor | Good | | HOLBEACH AV_P_1 | Fair | Good | Fair | Fair | | LYMERSTON ST_C_1 | Very poor | Good | Poor | Very good | | LYMERSTON ST_P_1 | Good | Fair | Fair | Very good | | MARY ST_P_1 | Poor | Fair | Poor | Very good | | MILNE LANE_P_1 | Very good | Poor | Fair | Very good | | PARK LANE_P_1 | Very poor | Fair | Fair | Very good | | RAILWAY LANE_P_1 | Fair | Fair | Fair | Very good | | RAILWAY RD_C_1 | Good | Fair | Poor | Fair | | RAILWAY RD_C_2 | Good | Fair | Poor | Very good | | RAILWAY RD_P_1 | Good | Fair | Poor | Very good | | RAILWAY RD_P_2 | Fair | Fair | Poor | Very good | | REILLY LANE_P_1 | Very poor | Good | Poor | Very good | | ROBERTS LANE/STREET_P_1 | Poor | Good | Poor | Good | | ROBERTS ST_P_1 | Very poor | Good | Poor | Good | | SAMUEL ST_P_1 | Fair | Good | Fair | Very good | | SMITH ST_P_1 | Fair | Fair | Fair | Very good | | | IRI group | Rut group | Texture group | Cracking group | |--------------------------------------------|-----------|-----------|---------------|----------------| | SOUTH ST_P_1 | Very poor | Good | Poor | Good | | ST PETERS ST_P_1 | Poor | Good | Poor | Very good | | STEWART LANE _P_1 | Very poor | Good | Fair | Very good | | SUTHERLAND ST_C_1 | Fair | Good | Poor | Very good | | SUTHERLAND ST_P_1 | Good | Fair | Fair | Very good | | TALBOT ST _C_1 | Poor | Good | Poor | Very good | | TALBOT ST _P_1 | Very poor | Fair | Poor | Good | | TERRY ST _C_1 | Good | Fair | Poor | Very good | | TERRY ST _P_1 | Good | Very good | Poor | Very good | | UNWINS BRIDGE RD_C_1 | Very poor | Fair | Fair | Very good | | UNWINS BRIDGE RD_C_2 | Very poor | Fair | Fair | Very good | | UNWINS BRIDGE RD_P_1 | Poor | Fair | Poor | Very good | | UNWINS BRIDGE RD_P_2 | Poor | Fair | Fair | Very good | | VICTORIA ST (SOUTH OF PRINCES HIGHWAY)_P_1 | Very poor | Fair | Fair | Good | | WENTWORTH ST_P_1 | Poor | Fair | Poor | Poor | | YELVERTON ST_C_1 | Very poor | Good | Fair | Good | | YELVERTON ST_P_1 | Very poor | Fair | Fair | Very good | - vi - ## **CONTENTS** | 1 | INTRODUCTION | 9 | |-----|------------------------------------|----| | 1.1 | General | 9 | | 1.2 | Condition Survey | 9 | | 1.3 | Assumptions for levels of services | 10 | | | Scope | | | 2.1 | Rut Depth | 12 | | 2.2 | Roughness | 13 | | 2.3 | Texture Depth | 14 | | 2.4 | Cracking | 16 | | 3 | CONCLUSIONS | 19 | | 4 | SURVEY RESULTS | 21 | | RFF | ERENCES | 22 | | viii | - | |------|---| ### 1 INTRODUCTION ## 1.1 General ARRB was commissioned by CDS JV (CPB Contractors Pty Limited, Dragados Australia Pty Ltd, and Samsung C&T Corporation Joint Venture) to survey and assess the current condition of the nominated roads associated with the construction of the WestConnex New M5 Main Works project. Pavement surface condition survey of the road network was undertaken by ARRB in April 2016 to collect surface condition distresses including rutting, roughness, cracking and texture depth. The survey scope included a series of roads managed by several organisations and the pre and post construction condition report is presented for these roads. The study area involves several road authorities. The road condition is reported in separate road groups for each organisation where applicable. - Group 1 Local roads that will be utilised for heavy and oversized vehicles - Group 2 Local roads within 50m of the construction works but are not utilised for construction traffic - Group 3 Non-haulage maintenance roads - RMS- Arterial roads within 50m buffer zone The report summarises the current surface condition of the affected road sections by lane. The following sections address road conditions for Marrickville Council. ## 1.2 Condition Survey ARRB used Hawkeye 2000 survey vehicle to capture surface condition data of the road pavement network including: - rut depth (inner, outer and lane) - roughness (IRI, NAASRA) - surface texture including sand patch texture depth (SPTD) and sensor measured texture depth (SMTD) for outer and between wheel paths. - Surface condition including cracking data and other surface defects. Source: ARRB Group Ltd Figure Figure 1.1: Network survey vehicle (NSV) ## 1.3 Assumptions for levels of services To help communicate between engineers and management teams, condition data is further grouped into "Very Good", "Good", "Fair", "Poor", and "Very poor" based on current industry practices, see Table 1.1. Class name **Very Good** Good Fair Very poor 0-2.5 >15 Rut depth (mm) range 2.5-5 5-10 10-15 Roughness (IRI) range 0 - 1.51.5 - 3.03.0-4.2 4.2-5.33 >5.33 1.2 - 0.80.4 - 0.20.2-0 Texture range (mm) >1.2 0.8 - 0.4Cracking (%) range 0-5 5-10 10-15 15-20 >20 Table 1.1: Current industry Level of services ## 1.4 Scope The scope of the report is as follows: - collection and processing of pavement condition data including roughness (IRI m/km), rut depth (mm), cracking (%) and texture depth (mm) - preparation of a report evaluating the current condition of the road and describe outstanding defects in terms of rutting, roughness, texture depth and cracking ## 2 MARRICKVILLE COUNCIL Table 2.1 shows the average condition of IRI, rutting, texture depth and cracking for the nominated roads of reporting for the MC (Marrickville Council) in terms of Group 1 and Group 2 road. Table 2.2 presents the worst condition on each of the selected roads. Below is the definition of Group 1 and Group 2: - Group 1 Local Roads that will be utilised for heavy and oversized vehicles - Group 2 Local roads within 50m of the construction works but are not utilised for construction traffic | | IRI (m/km) | Rut (mm) | Texture depth (mm) | Cracking (%) | |--------------|------------|----------|--------------------|--------------| | CANAL RD_C_1 | 1.56 | 4.29 | 0.45 | 1.80 | | CANAL RD_C_2 | 2.00 | 4.71 | 0.46 | 1.80 | | CANAL RD_C_3 | 2.21 | 5.34 | 0.50 | 6.48 | | CANAL RD_P_1 | 2.14 | 3.32 | 0.46 | 1.53 | | CANAL RD_P_2 | 2.61 | 5.88 | 0.48 | 0.00 | Table 2.1: Average road network condition- MC- Group 1 road Average road network condition for Group 2 road is presented in Appendix due to its size. (Table 0.1) | | IRI (m/km) | Rut (mm) | Texture depth (mm) | Cracking (%) | |--------------|------------|----------|--------------------|--------------| | CANAL RD_C_1 | 2.07 | 6.62 | 0.37 | 3.00 | | CANAL RD_C_2 | 2.42 | 6.64 | 0.38 | 4.30 | | CANAL RD_C_3 | 3.59 | 7.24 | 0.38 | 10.60 | | CANAL RD_P_1 | 3.22 | 4.05 | 0.40 | 3.33 | | CANAL RD_P_2 | 4.49 | 6.99 | 0.40 | 0.00 | | CANAL RD_C_1 | 2.07 | 6.62 | 0.37 | 3.00 | Table 2.2: Worst condition on the network- MC- Group 1 road The worst condition of Group 2 road is presented in Table 0.2. According to the definition shown above (Section 1.3), the following condition statement is presented for each of the surveyed road. It should be noted that the condition statement could vary depending on the definition. The following condition categories are for the purpose of the pre and post construction comparison rather than a customised local condition assessment. | | IRI group | Rut group | Texture group | Cracking group | |--------------|-----------|-----------|---------------|----------------| | CANAL RD_C_1 | Good | Good | Fair | Very good | | CANAL RD_C_2 | Good | Good | Fair | Very good | | CANAL RD_C_3 | Good | Fair | Fair | Good | | CANAL RD_P_1 | Good | Good | Fair | Very good | Table 2.3: Categories of condition- MC- Group 1 road The condition categories report for Group 2 road is included in Table 0.3. Each of the individual physical parameter (rut depth, roughness, texture depth and cracking) is described separately in the following sections. ## 2.1 Rut Depth A rut is a pavement defect in the form of a longitudinal depression of the surface, usually in a wheel path (Austroads 2006b). Rutting is considered as one of the most critical parameters on bituminous pavements in urban environments, as it reflects the deformation of the pavement. Rutting also has implications for road safety due to the potential for water ponding and subsequent loss of skid resistance. The deformation (rutting), of the asphalt may be functional or structural distress, depending on the pavement's base. Signalised intersections with asphalt pavements are particularly prone to rutting under heavy traffic. For the current project, rutting data is collected using a 13-point laser system, which measures a 2-metre transverse profile across the lane. A full transverse profile is measured every 20 mm of longitudinal travel and the processing software allows both lane and wheel path rutting to be measured using the string line and straight edge model. Figure 2.1 and Figure 2.2 present the average rutting of each road lane for Group 1 and Group 2 respectively. Some sections in Group 2 show rut depth of up to 12mm, such as BELMORE LANE_P_1 and MILNE LANE_P_1 and are considered 'poor'. Figure 2.1: Rutting condition- MC- Group 1 road Figure 2.2: Rutting condition- MC- Group 2 road ## 2.2 Roughness Roughness is considered as an important indicator of driver comfort and its change is accepted as an indicator of condition deterioration. Roughness data is presented as the International Roughness Index (IRI), the average of the left and right wheel path values for the surveyed lanes. Austroads has endorsed the International Roughness Index (IRI) as the reporting unit for road roughness in Australasia (Austroads 2006a). Figure 2.3 and Figure 2.4 shows the average roughness condition of each surveyed lane for Group 1 and Group 2. Most Group 1 roads present roughness value of around 2 IRI and are considered 'fair', except KINGSGROVE ROAD_P_2. Group 2 contains some section with roughness up to 8 IRI, such as ALFRED ST_P_1, BAKERS LANE_P_1, BISHOP ST_P_1, and STEWART LANE _P_1; VICTORIA ST (SOUTH OF PRINCES HIGHWAY)_P_1 even go up to 10 IRI. Figure 2.3: Roughness condition- MC- Group 1 road Figure 2.4: Roughness condition- MC- Group 2 road ## 2.3 Texture Depth Texture depth refers to the amplitude of deviations from the surface plane of the road and is influenced by the size, shape and spacing of the aggregate of the surfacing material. Texture is an important contributor to safety, as adequate texture depth is required to maintain skid resistance, particularly under wet conditions. On bituminous surfaces, it may indicate the loss of texture or appearance of bitumen on the surface. Both the outer (where trafficking is greatest) and inner wheel paths (where trafficking is minimal) were measured. It should be noted that a comparison of both could indicate texture loss, which should be monitored against future measurements to determine the rate and extent of deterioration. In the analysis, texture was taken from the survey data as the minimum of SMTD (mm) of the left wheel path and right wheel path. As indicated in Figure 2.5 and Figure 2.6, most roads in Group 1 are considered 'poor' in texture depth condition. Group 2 roads are found to be in 'fair' or 'poor' condition for texture depth. Figure 2.5: Texture depth- MC- Group 1 road Figure 2.6: Texture depth- MC- Group 2 road ## 2.4 Cracking A crack is an unplanned break or discontinuity in the integrity of the pavement surface, usually a narrow opening or partial fracture, often indicating vertical splitting of the pavement, not necessarily extending through the entire thickness of a course or pavement (Austroads 2006C). Cracks may be linear (transverse or longitudinal), interconnected (crocodile or block), or irregular, single and isolated or in groups, with varying spacing between them. Once cracking is initiated, the potential is much greater for accelerated deterioration of the pavement (Austroads 2006C). For the current project, cracking data was collected using an Automatic Crack Detection system fitted to the ARRB NSV, which measures and classifies different types of cracking, their extent, severity etc. While analysing the network condition, percent of area cracked, which is an aggregation of values for all types of cracking was used as a reference for analysis from the surveyed data. Figure 2.7 and Figure 2.8 show average cracking for Group 1 and Group 2 road. All sections in Group 1 are considered 'good' or 'very good'. Group 2 roads are in the same cracking state except Wentworth Street prescribed direction lane 1, which is 'poor'. (Table 0.3) Figure 2.7: Cracking condition- MC- Group 1 road Figure 2.8: Cracking condition- MC- Group 2 road | Pre-Construction Road Condition Report for WestConnex New M5 Main Works Project | | | | | |---------------------------------------------------------------------------------|--|--|--|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ### 3 CONCLUSIONS ARRB was commissioned by CDS JV (CPB Contractors Pty Limited, Dragados Australia Pty Ltd, and Samsung C&T Corporation Joint Venture) to survey and assess the current condition of the nominated roads associated with the construction of the WestConnex New M5 Main Works project. Surface condition survey of the road network was conducted by ARRB in April 2016 to collect surface condition distresses including rutting, roughness, texture, cracking information. The scope of the report includes: - collection and processing of pavement condition data into various data categories including roughness (IRI m/km), rut depth (mm), texture depth (mm) and cracking (% area). - preparation of a report evaluating the overall condition of each road by direction and lane for each of the road authorities involved in the study area. The study area involves several road authorities and the conditions were reported in road groups for each organisation, where applicable, as per the below. - Group 1 Local Roads that will be utilised for heavy and oversized vehicles - Group 2 Local roads within 50m of the construction works but are not utilised for construction traffic - Group 3 Non-haulage maintenance roads - RMS- Arterial roads within 50m buffer zone Condition assessments were presented based on current industry practices for the purpose of dilapidation, rather than a customised local condition assessment. Please be mindful that the condition statement could vary depending on the definition. See Section 1.3. The findings from the condition assessments are presented for Marrickville Council. #### Marrickville Council Condition assessment based on current industry standards, presented utilising the average condition of road sections owned by Marrickville Council. ### Group 1 road: | | IRI group | Rut group | Texture group | Cracking group | |--------------|-----------|-----------|---------------|----------------| | CANAL RD_C_1 | Good | Good | Fair | Very good | | CANAL RD_C_2 | Good | Good | Fair | Very good | | CANAL RD_C_3 | Good | Fair | Fair | Good | | CANAL RD_P_1 | Good | Good | Fair | Very good | | CANAL RD_P_2 | Good | Fair | Fair | Very good | **Group 2** contains a large number of road sections and is presented in Table 0.3. | Pre-Construction Road Condition Report f | or WestConnex New M5 Ma | in Works Project | | |------------------------------------------|-------------------------|------------------|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ## 4 SURVEY RESULTS Surface condition survey processed data results are supplied to CDS JV separately in electronic format. The file names and contents are as follows (Table 4.1): Table 4.1: Files with survey results | File Name | Content | |------------------------------------------------|---------------------------------------------| | PSS16084 - NSV_MS_WestConnex Laser Data | Roughness, rut depth and Texture depth data | | PSS16084 - NSV_MS_WestConnex Visual Assessment | Cracking and other surface defects data | | | | ## **REFERENCES** Austroads 2006a, *Guide to Asset Management Part 5B: Roughness*, AGAM05B/07, Austroads, Sydney, NSW. Austroads 2006b, Guide to Asset Management Part 5C: Rutting, AGAM05C/07, Austroads, Sydney, NSW Austroads 2006C, Guide to Asset Management Part 5C: Cracking, AGAM05E/07, Austroads, Sydney, NSW. ## APPENDIX A MARRICKVILLE COUNCIL CONDITION DETAILS Table 0.1: Average network condition- MC Group 2 road | | IRI (m/km) | Rut (mm) | Texture depth (mm) | Cracking (%) | |--------------------------------------|------------|----------|--------------------|--------------| | ALFRED ST_P_1 | 7.97 | 7.06 | 0.68 | 1.00 | | BAKERS LANE_P_1 | 7.00 | 7.96 | 0.55 | 6.50 | | BARDEN ST_P_1 | 2.56 | 5.52 | 0.33 | 1.92 | | BARWON PARK RD_C_1 | 3.04 | 5.55 | 0.30 | 4.49 | | BARWON PARK RD_P_1 | 3.94 | 4.39 | 0.43 | 4.53 | | BELLEVUE ST (OPPOSITE GEORGE ST)_C_1 | 0.00 | 5.01 | 0.36 | 8.10 | | BELLEVUE ST_C_1 | 3.13 | 6.73 | 0.37 | 0.83 | | BELLEVUE ST_P_1 | 0.00 | 4.48 | 0.45 | 0.00 | | BELMORE LANE_P_1 | 2.41 | 12.59 | 0.66 | 0.44 | | BELMORE ST_P_1 | 3.16 | 3.76 | 0.57 | 0.00 | | BISHOP ST_P_1 | 7.23 | 5.90 | 0.48 | 7.60 | | BROWN ST_P_1 | 3.88 | 4.23 | 0.31 | 0.00 | | CHURCH ST_P_1 | 3.80 | 4.48 | 0.36 | 6.50 | | CROWN ST_P_1 | 5.95 | 9.58 | 0.40 | 0.00 | | EDITH ST_P_1 | 3.48 | 6.94 | 0.67 | 2.25 | | FANNING ST_P_1 | 2.83 | 1.66 | 0.38 | 11.21 | | FLORENCE ST_P_1 | 4.54 | 4.10 | 0.63 | 0.17 | | FREDERICK ST_P_1 | 2.38 | 6.89 | 0.67 | 0.25 | | GEORGE ST_C_1 | 2.90 | 4.33 | 0.54 | 3.58 | | GEORGE ST_P_1 | 2.42 | 3.61 | 0.55 | 0.00 | | GROVE ST_P_1 | 5.75 | 6.70 | 0.43 | 0.25 | | HART ST_P_1 | 5.18 | 2.67 | 0.43 | 11.37 | | HILTON AV_P_1 | 0.00 | 5.47 | 0.57 | 0.00 | | HOLBEACH AV_C_1 | 3.50 | 6.09 | 0.40 | 5.01 | | HOLBEACH AV_P_1 | 3.53 | 4.62 | 0.43 | 10.89 | | HUTCHINSON ST_C_1 | 4.51 | 3.12 | 0.60 | 0.94 | | HUTCHINSON ST_P_1 | 3.59 | 5.74 | 0.59 | 3.08 | | LYMERSTON ST_C_1 | 5.46 | 4.30 | 0.35 | 0.50 | | LYMERSTON ST_P_1 | 2.46 | 5.72 | 0.44 | 0.06 | | MARY ST_P_1 | 4.72 | 6.83 | 0.28 | 2.50 | | MILNE LANE_P_1 | 0.00 | 11.99 | 0.62 | 0.00 | | PARK LANE_P_1 | 6.15 | 5.53 | 0.49 | 0.00 | | RAILWAY LANE_P_1 | 3.76 | 7.25 | 0.53 | 0.13 | | RAILWAY RD_C_1 | 1.66 | 5.61 | 0.26 | 14.38 | | | IRI (m/km) | Rut (mm) | Texture depth (mm) | Cracking (%) | |--------------------------------------------|------------|----------|--------------------|--------------| | RAILWAY RD_C_2 | 2.20 | 9.67 | 0.28 | 0.31 | | RAILWAY RD_P_1 | 2.88 | 6.03 | 0.28 | 0.00 | | RAILWAY RD_P_2 | 3.79 | 6.31 | 0.28 | 0.00 | | REILLY LANE_P_1 | 5.68 | 4.06 | 0.38 | 0.00 | | ROBERTS LANE/STREET_P_1 | 4.84 | 3.86 | 0.27 | 8.00 | | ROBERTS ST_P_1 | 5.40 | 2.74 | 0.30 | 6.00 | | SAMUEL ST_P_1 | 3.52 | 4.72 | 0.72 | 0.00 | | SMITH ST_P_1 | 3.89 | 5.08 | 0.43 | 0.06 | | SOUTH ST_P_1 | 5.51 | 3.46 | 0.38 | 5.25 | | ST PETERS ST_P_1 | 4.56 | 4.42 | 0.40 | 4.00 | | STATION ST_C_1 | 3.08 | 2.58 | 0.36 | 1.50 | | STATION ST_P_1 | 5.00 | 2.99 | 0.39 | 3.24 | | STEWART LANE _P_1 | 10.38 | 4.57 | 0.56 | 0.00 | | SUTHERLAND ST_C_1 | 4.08 | 3.19 | 0.31 | 4.88 | | SUTHERLAND ST_P_1 | 2.72 | 5.11 | 0.53 | 0.11 | | TALBOT ST _C_1 | 4.80 | 3.84 | 0.39 | 4.50 | | TALBOT ST _P_1 | 6.20 | 6.41 | 0.37 | 6.00 | | TERRY ST _C_1 | 1.63 | 5.23 | 0.34 | 0.00 | | TERRY ST _P_1 | 2.73 | 2.28 | 0.33 | 0.06 | | UNWINS BRIDGE RD_C_1 | 5.89 | 7.92 | 0.50 | 3.38 | | UNWINS BRIDGE RD_C_2 | 6.91 | 6.97 | 0.47 | 1.90 | | UNWINS BRIDGE RD_P_1 | 4.39 | 6.14 | 0.38 | 0.25 | | UNWINS BRIDGE RD_P_2 | 5.29 | 7.22 | 0.45 | 0.00 | | VICTORIA ST (SOUTH OF PRINCES HIGHWAY)_P_1 | 9.20 | 8.23 | 0.56 | 7.00 | | WENTWORTH ST_P_1 | 4.25 | 6.79 | 0.39 | 18.45 | | YELVERTON ST_C_1 | 5.84 | 3.99 | 0.48 | 9.83 | | YELVERTON ST_P_1 | 6.06 | 7.53 | 0.49 | 0.00 | Table 0.2: Worst network condition- MC- Group 2 road | | IRI (m/km) | Rut (mm) | Texture depth (mm) | Cracking (%) | |--------------------------------------|------------|----------|--------------------|--------------| | ALFRED ST_P_1 | 9.62 | 10.81 | 0.63 | 2.00 | | BAKERS LANE_P_1 | 7.54 | 8.87 | 0.50 | 8.50 | | BARDEN ST_P_1 | 4.44 | 9.78 | 0.31 | 5.50 | | BARWON PARK RD_C_1 | 4.42 | 6.95 | 0.28 | 7.25 | | BARWON PARK RD_P_1 | 4.61 | 5.45 | 0.39 | 7.00 | | BELLEVUE ST (OPPOSITE GEORGE ST)_C_1 | 0.00 | 5.01 | 0.36 | 8.10 | | BELLEVUE ST_C_1 | 3.13 | 6.73 | 0.37 | 0.83 | | BELLEVUE ST_P_1 | 0.00 | 4.48 | 0.45 | 0.00 | | BELMORE LANE_P_1 | 4.83 | 17.99 | 0.56 | 0.50 | | BELMORE ST_P_1 | 3.41 | 3.84 | 0.56 | 0.00 | | BISHOP ST_P_1 | 7.99 | 7.77 | 0.37 | 9.00 | | BROWN ST_P_1 | 4.09 | 4.51 | 0.31 | 0.00 | | CHURCH ST_P_1 | 7.60 | 5.11 | 0.32 | 10.00 | | CROWN ST_P_1 | 6.33 | 11.90 | 0.39 | 0.00 | | EDITH ST_P_1 | 4.69 | 8.04 | 0.67 | 4.50 | | FANNING ST_P_1 | 3.36 | 2.02 | 0.36 | 18.63 | | FLORENCE ST_P_1 | 4.95 | 5.04 | 0.59 | 0.50 | | FREDERICK ST_P_1 | 4.76 | 8.38 | 0.63 | 0.50 | | GEORGE ST_C_1 | 3.14 | 5.24 | 0.53 | 4.65 | | GEORGE ST_P_1 | 2.53 | 4.00 | 0.52 | 0.00 | | GROVE ST_P_1 | 6.37 | 7.56 | 0.41 | 0.50 | | HART ST_P_1 | 5.22 | 3.66 | 0.42 | 13.10 | | HILTON AV_P_1 | 0.00 | 5.47 | 0.57 | 0.00 | | HOLBEACH AV_C_1 | 4.71 | 8.98 | 0.27 | 19.05 | | HOLBEACH AV_P_1 | 5.33 | 6.23 | 0.32 | 17.43 | | HUTCHINSON ST_C_1 | 5.71 | 3.83 | 0.59 | 1.88 | | HUTCHINSON ST_P_1 | 3.92 | 8.53 | 0.53 | 6.15 | | LYMERSTON ST_C_1 | 5.98 | 5.47 | 0.27 | 1.00 | | LYMERSTON ST_P_1 | 4.91 | 6.99 | 0.44 | 0.13 | | MARY ST_P_1 | 5.71 | 7.19 | 0.28 | 5.00 | | MILNE LANE_P_1 | 0.00 | 11.99 | 0.62 | 0.00 | | PARK LANE_P_1 | 6.15 | 5.53 | 0.49 | 0.00 | | RAILWAY LANE_P_1 | 7.52 | 8.90 | 0.43 | 0.25 | | RAILWAY RD_C_1 | 1.89 | 5.87 | 0.25 | 18.60 | | RAILWAY RD_C_2 | 2.23 | 9.84 | 0.27 | 0.38 | | RAILWAY RD_P_1 | 3.84 | 6.58 | 0.25 | 0.00 | | RAILWAY RD_P_2 | 4.97 | 7.47 | 0.25 | 0.00 | | | IRI (m/km) | Rut (mm) | Texture depth (mm) | Cracking (%) | |--------------------------------------------|------------|----------|--------------------|--------------| | REILLY LANE_P_1 | 6.05 | 4.55 | 0.37 | 0.00 | | ROBERTS LANE/STREET_P_1 | 5.03 | 5.03 | 0.26 | 8.50 | | ROBERTS ST_P_1 | 5.92 | 2.80 | 0.30 | 9.00 | | SAMUEL ST_P_1 | 4.14 | 5.14 | 0.63 | 0.00 | | SMITH ST_P_1 | 4.09 | 5.54 | 0.43 | 0.13 | | SOUTH ST_P_1 | 8.18 | 6.03 | 0.29 | 13.25 | | ST PETERS ST_P_1 | 4.76 | 4.99 | 0.35 | 7.50 | | STATION ST_C_1 | 3.64 | 3.25 | 0.34 | 5.00 | | STATION ST_P_1 | 9.21 | 3.75 | 0.29 | 8.50 | | STEWART LANE _P_1 | 10.38 | 4.57 | 0.56 | 0.00 | | SUTHERLAND ST_C_1 | 4.35 | 3.71 | 0.29 | 5.75 | | SUTHERLAND ST_P_1 | 5.43 | 5.44 | 0.38 | 0.23 | | TALBOT ST _C_1 | 4.80 | 3.84 | 0.39 | 4.50 | | TALBOT ST _P_1 | 6.20 | 6.41 | 0.37 | 6.00 | | TERRY ST _C_1 | 3.26 | 6.99 | 0.34 | 0.00 | | TERRY ST _P_1 | 3.17 | 2.50 | 0.32 | 0.13 | | UNWINS BRIDGE RD_C_1 | 6.16 | 9.38 | 0.39 | 5.13 | | UNWINS BRIDGE RD_C_2 | 8.04 | 7.33 | 0.46 | 3.30 | | UNWINS BRIDGE RD_P_1 | 5.26 | 6.78 | 0.36 | 0.50 | | UNWINS BRIDGE RD_P_2 | 5.49 | 7.41 | 0.41 | 0.00 | | VICTORIA ST (SOUTH OF PRINCES HIGHWAY)_P_1 | 9.20 | 8.23 | 0.56 | 7.00 | | WENTWORTH ST_P_1 | 4.69 | 8.82 | 0.38 | 33.90 | | YELVERTON ST_C_1 | 5.92 | 4.79 | 0.43 | 17.17 | | YELVERTON ST_P_1 | 6.33 | 8.28 | 0.47 | 0.00 | Table 0.3: Categories of condition- MC- Group 2 road | - W | IRI group | Rut group | Texture group | Cracking group | |-----------------------------------------|-----------|-----------|---------------|----------------| | ALFRED ST_P_1 | Very poor | Fair | Fair | Very good | | BAKERS LANE_P_1 | Very poor | Fair | Fair | Good | | BARDEN ST_P_1 | Good | Fair | Poor | Very good | | BARWON PARK RD_C_1 | Fair | Fair | Poor | Very good | | BARWON PARK RD_P_1 | Fair | Good | Fair | Very good | | BELLEVUE ST (OPPOSITE
GEORGE ST)_C_1 | Very good | Fair | Poor | Good | | BELLEVUE ST_C_1 | Fair | Fair | Poor | Very good | | BELLEVUE ST_P_1 | Very good | Good | Fair | Very good | | BELMORE LANE_P_1 | Good | Poor | Fair | Very good | | BELMORE ST_P_1 | Fair | Good | Fair | Very good | | BISHOP ST_P_1 | Very poor | Fair | Fair | Good | | BROWN ST_P_1 | Fair | Good | Poor | Very good | | CHURCH ST_P_1 | Fair | Good | Poor | Good | | CROWN ST_P_1 | Very poor | Fair | Poor | Very good | | EDITH ST_P_1 | Fair | Fair | Fair | Very good | | FANNING ST_P_1 | Good | Very good | Poor | Fair | | FLORENCE ST_P_1 | Poor | Good | Fair | Very good | | FREDERICK ST_P_1 | Good | Fair | Fair | Very good | | GEORGE ST_C_1 | Good | Good | Fair | Very good | | GEORGE ST_P_1 | Good | Good | Fair | Very good | | GROVE ST_P_1 | Very poor | Fair | Fair | Very good | | HART ST_P_1 | Poor | Good | Fair | Fair | | HILTON AV_P_1 | Very good | Fair | Fair | Very good | | HOLBEACH AV_C_1 | Fair | Fair | Poor | Good | | HOLBEACH AV_P_1 | Fair | Good | Fair | Fair | | LYMERSTON ST_C_1 | Very poor | Good | Poor | Very good | | LYMERSTON ST_P_1 | Good | Fair | Fair | Very good | | MARY ST_P_1 | Poor | Fair | Poor | Very good | | MILNE LANE_P_1 | Very good | Poor | Fair | Very good | | PARK LANE_P_1 | Very poor | Fair | Fair | Very good | | RAILWAY LANE_P_1 | Fair | Fair | Fair | Very good | | RAILWAY RD_C_1 | Good | Fair | Poor | Fair | | RAILWAY RD_C_2 | Good | Fair | Poor | Very good | | RAILWAY RD_P_1 | Good | Fair | Poor | Very good | | | IRI group | Rut group | Texture group | Cracking group | |--|-----------|-----------|---------------|----------------| | RAILWAY RD_P_2 | Fair | Fair | Poor | Very good | | REILLY LANE_P_1 | Very poor | Good | Poor | Very good | | ROBERTS LANE/STREET_P_1 | | Good | Poor | Good | | ROBERTS ST_P_1 | Very poor | Good | Poor | Good | | SAMUEL ST_P_1 | Fair | Good | Fair | Very good | | SMITH ST_P_1 | Fair | Fair | Fair | Very good | | SOUTH ST_P_1 | Very poor | Good | Poor | Good | | ST PETERS ST_P_1 | Poor | Good | Poor | Very good | | STEWART LANE _P_1 | Very poor | Good | Fair | Very good | | SUTHERLAND ST_C_1 | Fair | Good | Poor | Very good | | SUTHERLAND ST_P_1 | Good | Fair | Fair | Very good | | TALBOT ST _C_1 | | Good | Poor | Very good | | TALBOT ST _P_1 | Very poor | Fair | Poor | Good | | TERRY ST _C_1 | Good | Fair | Poor | Very good | | TERRY ST _P_1 | Good | Very good | Poor | Very good | | UNWINS BRIDGE RD_C_1 | Very poor | Fair | Fair | Very good | | UNWINS BRIDGE RD_C_2 | Very poor | Fair | Fair | Very good | | UNWINS BRIDGE RD_P_1 | | Fair | Poor | Very good | | UNWINS BRIDGE RD_P_2 | Poor | Fair | Fair | Very good | | VICTORIA ST (SOUTH OF PRINCES HIGHWAY)_P_1 | Very poor | Fair | Fair | Good | | WENTWORTH ST_P_1 | Poor | Fair | Poor | Poor | | YELVERTON ST_C_1 | Very poor | Good | Fair | Good | | YELVERTON ST_P_1 | Very poor | Fair | Fair | Very good | Attachment 2 - Clause 3.2 Pavement Repairs of SWTC Appendix C.6 Local Road Maintenance during Project Company's Work ## 3.2 Pavement Repairs | Element | Requirement | | | |-----------------------------|---|--|--| | 1.Safe conditions | Repair to ensure road remains open to traffic providing saf-
conditions under the prevailing weather conditions, traffic
volume, and speed zone. | | | | 2.Integrity of
materials | All repairs, unless otherwise specified, shall comprise materials that are compatible with, or of better quality than the existing pavement. Asphalt may be used to alleviate stepping at joint. | | | | 3.Unsound
material | For permanent repairs, the Project Company must remove
enough of the underlying unsound material to ensure sound
repair is achieved. | | | | 4.Compaction | Compaction shall achieve a uniformly dense, free from
segregation and well bonded repair sufficient to ensure
that it is not displaced, shoved, deformed, or picked up by
traffic. | | | | 5.Ride quality | The deviation both within the repair and between the existing pavement and the repair when measured with a 1.5 m straight edge shall not be greater than 10 mm with a maximum surface level difference of 5 mm at the perimeter of the repair | | | | 6.Surface Finish | The surface shall provide a uniform water resistance layer to protect the pavement layers from surface infiltration of moisture. The skid resistance of the surface shall not be lower than that apparent immediately in front of and beyond the work area. | | | | | Where surfacing aggregate is used it shall remain proud of the binder so that: | | | | | binder is not picked up by the tyres of traffic, and | | | | | the surface repair shall have no exposed bituminous
material. | | | | 7.Lateral drainage | Ensure completed repair does not adversely affect lateral drainage across shoulder. | | | 11 of 21 ### Code of Maintenance Standards for Service Centre Access Roads | Element | Requirement Excavated material and debris shall not ble left on the roadside or placed so as to impede surface drainage. Excess material shall be swept from the traffic lanes and bicycle lanes and disposed of legally and responsibly at the Project Company's expense. | | | |--|---|--|--| | 8.Excess material | | | | | 9.Avoid damage
to existing
surface | Repair material and binding agents used shall not cause damage to the integrity of the existing bituminous surfacing. | | |